Physicochemical Properties of Cells and Their Effects on Intrinsically Disordered Proteins (IDPs)
نویسندگان
چکیده
Disordered Proteins (IDPs) Francois-Xavier Theillet,†,∇ Andres Binolfi,†,∇ Tamara Frembgen-Kesner,‡ Karan Hingorani, Mohona Sarkar, Ciara Kyne, Conggang Li, Peter B. Crowley, Lila Gierasch, Gary J. Pielak, Adrian H. Elcock,‡ Anne Gershenson, and Philipp Selenko*,† †Department of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany ‡Department of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton Road, Iowa City, Iowa 52242, United States Departments of Biochemistry & Molecular Biology and Chemistry, Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States Department of Chemistry, Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
منابع مشابه
Intrinsically disordered proteins: lessons from colicins.
Defining structural features of IDPs (intrinsically disordered proteins) and relating these to biological function requires characterization of their dynamical properties. In the present paper, we review what is known about the IDPs of colicins, protein antibiotics that use their IDPs to enter bacterial cells. The structurally characterized colicin IDPs we consider contain linear binding epitop...
متن کاملThe Multiple Faces of Disordered Nucleoporins.
An evolutionary advantage of intrinsically disordered proteins (IDPs) is their ability to bind a variety of folded proteins-a paradigm that is central to the nucleocytoplasmic transport mechanism, in which nuclear transport receptors mediate the translocation of various cargo through the nuclear pore complex by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). FG-Nups are hi...
متن کاملEffects of Molecular Crowding on the Dynamics of Intrinsically Disordered Proteins
Inside cells, the concentration of macromolecules can reach up to 400 g/L. In such crowded environments, proteins are expected to behave differently than in vitro. It has been shown that the stability and the folding rate of a globular protein can be altered by the excluded volume effect produced by a high density of macromolecules. However, macromolecular crowding effects on intrinsically diso...
متن کاملIntrinsically Disordered Proteins Adaptively Reorganize Cellular Matter During Stress.
Intrinsically disordered proteins (IDPs) can protect cells from diverse stresses by forming higher order assemblies such as reversible aggregates or granules. Recently, Boothby et al. show that IDPs protect tardigrades against desiccation by forming a glass-like amorphous matrix, highlighting that material properties of disordered proteins can confer adaptation during stress.
متن کاملEvolutionarily Conserved Network Properties of Intrinsically Disordered Proteins
BACKGROUND Intrinsically disordered proteins (IDPs) lack a stable tertiary structure in isolation. Remarkably, however, a substantial portion of IDPs undergo disorder-to-order transitions upon binding to their cognate partners. Structural flexibility and binding plasticity enable IDPs to interact with a broad range of partners. However, the broader network properties that could provide addition...
متن کامل